Abstract

We study quantum decoherence of single-qubit and two-qubit Aharonov-Anandan (AA) geometric phase gates realized in a multistep scheme. Each AA gate is also compared with the dynamical phase gate performing the same unitary transformation within the same time period and coupled with the same environment, which is modeled as harmonic oscillators. It is found that the fidelities and the entanglement protection of the AA phase gates are enhanced by the states being superpositions of different eigenstates of the environmental coupling, and the noncommutativity between the qubit interaction and the environmental coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.