Abstract

Recently an ensemble of nuclear spins in a quantum dot have been proposed as a long-lived quantum memory. A quantum state of an electron spin in the dot can be faithfully transfered into nuclear spins through controlled hyperfine coupling. Here we study the decoherence of this memory due to nuclear spin dipolar coupling and inhomogeneous hyperfine interaction during the {\it storage} period. We calculated the maximum fidelity of writing, storing and reading operations. Our results show that nuclear spin dynamics can severely limits the performance of the proposed device for quantum information processing and storage based on nuclear spins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.