Abstract

Quantum information stored in a qubit is rapidly lost to the environment. The realization of robust qubits is one of the most important challenges in quantum computing. Herein, we propose to embed a logical qubit within the manifold of a qudit as a scheme to preserve quantum information over extended periods of time. Under identical conditions (e.g., decoherence channels), the submanifold of the logical qubit exhibits extended lifetimes compared to a pure two-level system (qubit). The retention of quantum information further improves with separation between the sublevels of the logical qubit. Lifetime enhancement can be understood in terms of entropy production of the encoding and nonencoding subspaces during evolution under a quantum map for a d-level system. The additional pathways for coherent evolution through intermediate sublevels within a d-level manifold provide an information-preserving mechanism: reversible alternative channels to the irreversible loss of information to the environment characteristic of open quantum systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call