Abstract
Equations of motion for weakly coupled excitonic complexes are derived. The description allows one to treat the system in the basis of electronic states localized on individual chromophores while at the same time accounting for experimentally observable delocalization effects in optical spectra. The equations are shown to be related to the well-known Förster type energy-transfer rate equations, but unlike Förster equations, they provide a description of the decoherence processes leading to suppression of the resonance coupling by bath fluctuations. Linear absorption and two-dimensional photon echo correlation spectra are calculated for simple model systems in the homogeneous limit, demonstrating a distinct delocalization effect and reduction of the resonance coupling due to interaction with the bath.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.