Abstract

Quantum walks are dynamic systems with a wide range of applications in quantum computation and quantum simulation of analog systems, therefore it is of common interest to understand what changes from an isolated process to one embedded in an environment. In the present work, we analyze the decoherence in a three-state uni-dimensional quantum walk. The approaches taken into consideration to account for the environment effects are phase and amplitude damping Kraus operators, unitary noise on the coin space, and broken links. The results are compared with the two-state quantum walk.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.