Abstract

We study a model of dephasing (decoherence) in a two-state quantum system (qubit) coupled to a bath of harmonic oscillators. An exact analytic solution for the reduced dynamics of a two-state system in this model has been obtained previously for factorizing initial states of the combined system. We show that the model admits exact solutions for a large class of correlated initial states which are typical in the theory of quantum measurements. We derive exact expressions for the off-diagonal elements of the qubit density matrix, which hold for an arbitrary strength of coupling between the qubit and the bath. The influence of initial correlations on decoherence is considered for different bath spectral densities. Time behavior of the qubit entropy in the decoherence process is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.