Abstract

We show how the quantum to classical transition of the cosmological fluctuations produced during inflation can be described by means of the influence functional and the master equation. We split the inflaton field into the system-field (long-wavelength modes), and the environment, represented by its own short-wavelength modes. We compute the decoherence times for the system-field modes and compare them with the other time scales of the model. We present the renormalized stochastic Langevin equation for an homogeneous system-field and then we analyze the influence of the environment on the power spectrum for some modes in the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.