Abstract

We find the conditions for one quantum system to function as a classical controller of another quantum system: the controller must be an open system and rapidly diagonalized in the diagonal basis of the controller variable that is coupled to the controlled system. This causes decoherence in the controlled system that can be made small if the rate of diagonalization is fast. We give a detailed example based on the quantum optomechanical control of a mechanical resonator. The resulting equations are structurally similar to recently proposed models for consistently combining quantum and classical stochastic dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.