Abstract

It is well known that the dynamical mechanism of decoherence may cause apparent superselection rules, like that of molecular chirality. These ‘environment-induced’ or ‘soft’ superselection rules may be contrasted with ‘hard’ superselection rules, like that of electric charge, whose existence is usually rigorously demonstrated by means of certain symmetry principles. We address the question of whether this distinction between ‘hard’ and ‘soft’ is well founded and argue that, despite first appearance, it might not be. For this we first review in detail some of the basic structural properties of the spaces of states and observables in order to establish a fairly precise notion of superselection rules. We then discuss two examples: 1.) the Bargmann superselection rule for overall mass in ordinary quantum mechanics, and 2.) the superselection rule for charge in quantum electrodynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.