Abstract

ABSTRACT Depending upon charge and chemical affinity, interplay between resistances of membrane (Rmem) and membrane–solution interface (RHT) may lead to preferential transport of an ion. Here, intermittent in-situ electrochemical impedance spectroscopy (EIS) was done during electrodriven transport (radiotracer based) to analyze the transport selectivity of Cs+ over Na+ in different membranes. Preference of the membranes for Cs+ was reflected in the time-dependent Nyquist plots itself. Bode plot analysis also indicated dominant Cs+ transport in terms of phase and frequency shift in crown ether (DB21C7) based membrane. In Cs+ selective polymer incluion membranes, irrespective of carrier, RHT contributed majorly to overall resistance. However, time dependence of RHT/Rmem was carrier as well as ion dependent. Interestingly, for nonselective ionic carrier, RHT/Rmem was majorly close to 1 and a reverese transport order than previous membranes were obtained. A higher Na+ transport (than Cs+) was also obtained for DB21C7 loaded Nafion, where, due to ion templating effect, Rmem was the governing factor. EIS spectral nature of a mixed feed solution follows that of the most preferred ion, thus suggesting that EIS can be used to study prospective real-life systems and can be used as a significant tool in designing ion-selective membranes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call