Abstract

This study examines the decoding times at which the brain processes structural information in music and compares them to timescales implicated in recent work on speech. Combining an experimental paradigm based on Ghitza and Greenberg (Phonetica, 66(1-2), 113-126, 2009) for speech with the approach of Farbood et al. (Journal of Experimental Psychology: Human Perception and Performance, 39(4), 911-918, 2013) for musical key-finding, listeners were asked to judge the key of short melodic sequences that were presented at a highly a compressed rate with varying durations of silence inserted in a periodic manner in the audio signal. The distorted audio signals comprised signal-silence alternations showing error rate curves that identify peak performance centered around an event rate of 5-7Hz (143-200ms interonset interval; 300-420beats/min), where event rate is defined as the average rate of pitch change. The data support the hypothesis that the perceptual analysis of music entails the processes of parsing the signal into chunks of the appropriate temporal granularity and decoding the signal for recognition. The music-speech comparison points to similarities in how auditory processing builds on the specific temporal structure of the input, and how that structure interacts with the internal temporal dynamics of the neural mechanisms underpinning perception.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.