Abstract
Intracortical Brain-Computer Interfaces (iBCI) use single-unit activity (SUA), multiunit activity (MUA) and local field potentials (LFP) to control neuroprosthetic devices. SUA and MUA are usually extracted from the bandpassed recording through amplitude thresholding, while subthreshold data are ignored. Here, we show that subthreshold data can actually be decoded to determine behavioral variables with test set accuracy of up to 100%. Although the utility of SUA, MUA and LFP for decoding behavioral variables has been explored previously, this study investigates the utility of spike-band subthreshold activity exclusively. We provide evidence suggesting that this activity can be used to keep decoding performance at acceptable levels even when SUA quality is reduced over time. To the best of our knowledge, the signals that we derive from the subthreshold activity may be the weakest neural signals that have ever been extracted from extracellular neural recordings, while still being decodable with test set accuracy of up to 100%. These results are relevant for the development of fully data-driven and automated methods for amplitude thresholding spike-band extracellular neural recordings in iBCIs containing thousands of electrodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.