Abstract

Parkinson's disease (PD) is a neurodegenerative disease characterized by the degeneration of midbrain substantia nigra pars compacta dopaminergic neurons and the formation of Lewy bodies. Over the years, researchers have gained extensive knowledge about dopaminergic neuron degeneration from the perspective of the environmental and disease-causing genetic factors; however, there is still no disease-modifying therapy. Aging has long been recognized as a major risk factor for PD; however, little is known about how aging contributes to the disease development. Genome instability is the main driving force behind aging, and has been poorly studied in patients with PD. Here, we summarize the evidence for nuclear DNA damage in PD. We also discuss the molecular mechanisms of nuclear DNA damage and repair in PD, especially from the perspective of familial PD-related mutant genes. Understanding the significance of DNA damage and repair may provide new potential intervention targets for treating PD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.