Abstract

Humans as social beings are profoundly affected by exclusion. Short experiences with people differing in their degree of prosocial behaviour can induce reliable preferences for including partners, but the neural mechanisms of this learning remain unclear. Here, we asked participants to play a short social interaction game based on “cyber-ball” where one fictive partner included and another excluded the subject, thus defining social roles (includer – “good”, excluder – “bad”). We then used multivariate pattern recognition on high-resolution functional magnetic resonance imaging (fMRI) data acquired before and after this game to test whether neural responses to the partners' and neutral control faces during a perceptual task reflect their learned social valence. Support vector classification scores revealed a learning-related increase in neural discrimination of social status in anterior insula and anterior cingulate regions, which was mainly driven by includer faces becoming distinguishable from excluder and control faces. Thus, face-evoked responses in anterior insula and anterior cingulate cortex contain fine-grained information shaped by prior social interactions that allow for categorisation of faces according to their learned social status. These lasting traces of social experience in cortical areas important for emotional and social processing could provide a substrate of how social inclusion shapes future behaviour and promotes cooperative interactions between individuals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call