Abstract

The interactions between mucin and aroma compounds have been shown to affect aroma perception. This study aimed to investigate the binding behavior between mucin and bis(2-methyl-3-furyl) disulfide and reveal the interaction mechanism at different pH levels. Based on our results, the binding percentages between mucin and bis(2-methyl-3-furyl) disulfide ranged from 37.03 % to 71.87 % at different contents. The complexes formation between mucin and bis(2-methyl-3-furyl) disulfide was confirmed by turbidity, particle size, zeta-potential, and surface hydrophobicity analyses. According to the results of multispectral techniques and molecular dynamic simulation, mucin could interact with bis(2-methyl-3-furyl) disulfide by hydrogen bonding, hydrophobic interactions, and van der Waals force. Furthermore, the binding constants of mucin to bis(2-methyl-3-furyl) disulfide were 1.26 × 103, 1.14 × 103, and 9.13 × 103 L mol−1 at pH 5.0, 7.0, and 8.5, respectively. These findings contribute to the comprehensive knowledge on the interaction mechanism between bis(2-methyl-3-furyl) disulfide and mucin, providing insights for flavor modulation in meat products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call