Abstract

Describing a potential energy surface in terms of local minima and the transition states that connect them provides a conceptual and computational framework for understanding and predicting observable properties. Visualizing the potential energy landscape using disconnectivity graphs supplies a graphical connection between different structure-seeking systems, which can relax efficiently to a particular morphology. Landscapes involving competing morphologies support multiple potential energy funnels, which may exhibit characteristic heat capacity features and relaxation time scales. These connections between the organization of the potential energy landscape and structure, dynamics and thermodynamics are common to all the examples presented, ranging from atomic and molecular clusters to biomolecules and soft and condensed matter. Further connections between motifs in the energy landscape and the interparticle forces can be developed using symmetry considerations and results from catastrophe theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.