Abstract
The human microbiome emerges as a promising reservoir for diagnostic markers and therapeutics. Since host-associated microbiomes at various body sites differ and diseases do not occur in isolation, a comprehensive analysis strategy highlighting the full potential of microbiomes should include diverse specimen types and various diseases. To ensure robust data quality and comparability across specimen types and diseases, we employ standardized protocols to generate sequencing data from 1931 prospectively collected specimens, including from saliva, plaque, skin, throat, eye, and stool, with an average sequencing depth of 5.3 gigabases. Collected from 515 patients, these samples yield an average of 3.7 metagenomes per patient. Our results suggest significant microbial variations across diseases and specimen types, including unexpected anatomical sites. We identify 583 unexplored species-level genome bins (SGBs) of which 189 are significantly disease-associated. Of note, the existence of microbial resistance genes in one specimen was indicative of the same resistance genes in other specimens of the same patient. Annotated and previously undescribed SGBs collectively harbor 28,315 potential biosynthetic gene clusters (BGCs), with 1050 significant correlations to diseases. Our combinatorial approach identifies distinct SGBs and BGCs, emphasizing the value of pan-body pan-disease microbiomics as a source for diagnostic and therapeutic strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.