Abstract

Current proposals for quantum compilers require the synthesis and optimization of linear reversible circuits and among them CNOT circuits. Since these circuits represent a significant part of the cost of running an entire quantum circuit, we aim at reducing their size. In this paper we present a new algorithm for the synthesis of CNOT circuits based on the solution of the syndrome decoding problem. Our method addresses the case of ideal hardware with an all-to-all qubit connectivity and the case of near-term quantum devices with restricted connectivity. For both cases, we present benchmarks showing that our algorithm outperforms existing algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.