Abstract

Functional magnetic resonance imaging (fMRI) is used to capture complex and dynamic interactions between brain regions while performing tasks. Task related alterations in the brain have been classified as task specific and task general, depending on whether they are particular to a task or common across multiple tasks. Using recent attempts in interpreting deep learning models, we propose an approach to determine both task specific and task general architectures of the functional brain. We demonstrate our methods with a reference‐based decoder on deep learning classifiers trained on 12,500 rest and task fMRI samples from the Human Connectome Project (HCP). The decoded task general and task specific motor and language architectures were validated with findings from previous studies. We found that unlike intersubject variability that is characteristic of functional pathology of neurological diseases, a small set of connections are sufficient to delineate the rest and task states. The nodes and connections in the task general architecture could serve as potential disease biomarkers as alterations in task general brain modulations are known to be implicated in several neuropsychiatric disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.