Abstract

BackgroundComputational models that successfully decode neural activity into speech are increasing in the adult literature, with convolutional neural networks (CNNs), backward linear models, and mutual information (MI) models all being applied to neural data in relation to speech input. This is not the case in the infant literature. New methodThree different computational models, two novel for infants, were applied to decode low-frequency speech envelope information. Previously-employed backward linear models were compared to novel CNN and MI-based models. Fifty infants provided EEG recordings when aged 4, 7, and 11 months, while listening passively to natural speech (sung or chanted nursery rhymes) presented by video with a female singer. ResultsEach model computed speech information for these nursery rhymes in two different low-frequency bands, delta and theta, thought to provide different types of linguistic information. All three models demonstrated significant levels of performance for delta-band neural activity from 4 months of age, with two of three models also showing significant performance for theta-band activity. All models also demonstrated higher accuracy for the delta-band neural responses. None of the models showed developmental (age-related) effects. Comparisons with existing methodsThe data demonstrate that the choice of algorithm used to decode speech envelope information from neural activity in the infant brain determines the developmental conclusions that can be drawn. ConclusionsThe modelling shows that better understanding of the strengths and weaknesses of each modelling approach is fundamental to improving our understanding of how the human brain builds a language system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.