Abstract
Trellis decoding of linear block codes in a Rayleigh fading channel is discussed. Two methods for calculating metric values for each bit in a received block are considered: the values are calculated from the received signal envelope sample and from the demodulator output. Bit error rate (BER) performances of hard decision and trellis decoding are compared using Hamming (7, 4) and Golay (24, 12) codes in computer simulations and laboratory experiments. A simplified trellis decoding algorithm, in which the hard decision output of a bit with an envelope sample greater than the threshold value is accepted as correct, is presented. Laboratory experimental results for trellis decoding in combination with Gaussian minimum-shift-keying (GMSK) modulation and frequency detection are shown. The effect of n-bit A/D-conversion in signal envelope sampling is investigated experimentally. The results show that the trellis decoding algorithm improves BER performance. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.