Abstract

A novel receiver for data-transmission systems using trellis-coded modulation is investigated. It comprises a whitened-matched filter and a trellis decoder which combines the previously separated functions of equalization and trellis-coded modulation (TCM) decoding. TCM encoder, transmission channel, and whitened-matched filter are modeled by a single finite-state machine with combined intersymbol interference and code states. Using ISI-state truncation techniques and the set-partitioning principles inherent in TCM, a systematic method is then developed for reducing the state complexity of the corresponding ISI and code trellis. A modified branch metric is used for canceling those ISI terms which are not represented by the trellis states. The approach leads to a family of Viterbi decoders which offer a tradeoff between decoding complexity and performance. An adaptive version of the proposed receiver is discussed, and an efficient structure for reduced-state decoding is given. Simulation results are presented for channels with severe amplitude and phase distortion. It is shown that the proposed receiver achieves a significant gain in noise margin over a conventional receiver which uses separate linear equalization and TCM decoding.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.