Abstract
When several scattered grating elements are arranged in such a way that their directions of motion are consistent with a common path, observers perceive them as belonging to a globally coherent moving object. Here we investigated how this coherence changes the representation of motion signals in human visual cortex using functional magnetic resonance imaging (fMRI) and multivariate voxel pattern decoding, which have the potential to reveal how well a stimulus is encoded in different contexts. Only during globally coherent motion was it possible to reliably distinguish fMRI signals evoked by different directions of motion in early visual cortex. This effect was specific to the retinotopic representation of the visual field quadrant in V1 traversed by the coherent element path and could not simply be attributed to a general increase in signal strength. Decoding was more reliable for cortical areas corresponding to the lower visual field. Because some previous studies observed poorer speed discrimination when motion was grouped, we also conducted behavioural experiments to investigate this with our stimuli, but did not reveal a consistent relationship between coherence and perceived speed. Taken together, these data show that neuronal populations in early visual cortex represent information that could be used for interpreting motion signals as unified objects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.