Abstract
The effective decoding of natural grasping behaviors is crucial for the natural control of neural prosthetics. This study aims to investigate the decoding performance of movement-related cortical potential (MRCP) source features between complex grasping actions and explore the temporal and frequency differences in inter-muscular and cortical-muscular coupling strength during movement. Based on the human grasping taxonomy and their frequency, five natural grasping motions-medium wrap, adducted thumb, adduction grip, tip pinch, and writing tripod-were chosen. We collected 64-channel electroencephalogram (EEG) and 5-channel surface electromyogram (sEMG) data from 17 healthy participants, and projected six EEG frequency bands into source space for further analysis. Results from multi-classification and binary classification demonstrated that MRCP source features could not only distinguish between power grasp and precision grasp, but also detect subtle action differences such as thumb adduction and abduction during the execution phase. Besides, we found that during natural reach-and-grasp movement, the coupling strength from cortical to muscle is lower than that from muscle to cortical, except in the hold phase of γ frequency band. Furthermore, a 12-Hz peak of inter-muscular coupling strength was found in movement execution, which might be related to movement planning and execution. We believe that this research will enhance our comprehension of the control and feedback mechanisms of human hand grasping and contributes to a natural and intuitive control for brain-computer interface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Systems and Rehabilitation Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.