Abstract

Upper extremity (UE) neuromuscular dysfunction critically affects post-stroke patients from performing activities of daily life. In this regard, various rehabilitation robotics have been developed for providing assistive and/or resistive forces that allow stroke survivors to train their arms towards regaining the lost arm function. However, most of the rehabilitation systems function in a passively such that they only allow patients navigate already-defined trajectories that often does not align with their UE movement intention, thus hindering adequate motor function recovery. One possible way to address this problem is to use a decoded UE motion intent to trigger active and intuitive motor training for the patients, which would help restore their UE arm functions. In this study, a new approach based on spatiotemporal neuromuscular descriptor and adaptive filtering technique (STD-AFT) is proposed to optimally characterize multiple patterns of UE movements in post-stroke patients towards providing inputs for intelligently driven motor training in the rehabilitation robotic systems. The proposed STD-AFT performance was systematically investigated and assessed in comparison with commonly adopted methods via high-density surface electromyogram recordings obtained from post-stroke survivors who performed 21 distinct classes of pre-defined limb movements. Furthermore, the movement intent decoding was done using four different classification algorithms. The experimental results showed that the proposed STD-AFT achieved significant improvement of up to 13.36% (p < 0.05) in characterizing the multiple patterns of movement intents with relatively lower standard-error value even in the presence of the external interference in form of noise compared to the existing benchmark methods. Also, the STD-AFT showed obvious pattern seperability for individual movement class in a two-dimensional space. The outcomes of this study suggest that the proposed STD-AFT could provide potential inputs for active and intuitive motor training in robotic systems targeted towards stroke-rehabilitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call