Abstract

During reach planning, fronto-parietal brain areas need to transform sensory information into a motor code. It is debated whether these areas maintain a sensory representation of the visual cue or a motor representation of the upcoming movement goal. Here, we present results from a delayed pro-/anti-reach task which allowed for dissociating the position of the visual cue from the reach goal. In this task, the visual cue was combined with a context rule (pro vs. anti) to infer the movement goal. Different levels of movement goal specification during the delay were obtained by presenting the context rule either before the delay together with the visual cue (specified movement goal) or after the delay (underspecified movement goal). By applying functional magnetic resonance imaging (fMRI) multivoxel pattern analysis (MVPA), we demonstrate movement goal encoding in the left dorsal premotor cortex (PMd) and bilateral superior parietal lobule (SPL) when the reach goal is specified. This suggests that fronto-parietal reach regions (PRRs) maintain a prospective motor code during reach planning. When the reach goal is underspecified, only area PMd but not SPL represents the visual cue position indicating an incomplete state of sensorimotor integration. Moreover, this result suggests a potential role of PMd in movement goal selection.

Highlights

  • It is debated whether the posterior parietal cortex (PPC) maintains retrospective visuospatial representations (Gottlieb and Goldberg, 1999; Bisley and Goldberg, 2003) or prospective motor representations of upcoming movement goals

  • In order to test for differences in the representation of the visual cue and the movement goal in posterior and anterior regions of the PPC, we split up the delay-related superior parietal lobule (SPL) activation into an anterior and a posterior cluster per hemisphere

  • We focused our analyses on the anterior and posterior SPL, previously discussed as human parietal reach regions (PRRs), the left anterior IPS (aIPS) and the left PMd

Read more

Summary

Introduction

It is debated whether the posterior parietal cortex (PPC) maintains retrospective visuospatial representations (Gottlieb and Goldberg, 1999; Bisley and Goldberg, 2003) or prospective motor representations of upcoming movement goals (for a review, see Andersen and Buneo, 2002). One key aspect of reach planning and execution is the spatial representation of the movement goal. Movement direction selectivity during reach execution has been demonstrated in human PPC, in particular in the superior parietal lobule (SPL) and intraparietal sulcus (IPS), as well as in the dorsal premotor cortex (PMd; Fabbri et al, 2010, 2014; Haar et al, 2015). Likewise, during reach planning SPL and IPS encode the position of the movement

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.