Abstract

Aims. The recent detection of cyanomethanimine in the interstellar medium makes its methyl derivative, 2-iminopropanenitrile (CH3C(CN)NH), a promising candidate for an interstellar detection. The aim of this work is to extend the current knowledge of the laboratory rotational spectrum to higher frequencies, which is an essential prerequisite for an identification of the molecular species in the interstellar medium by millimetre-wave astronomy. Methods. The room-temperature rotational spectrum of 2-iminopropanenitrile has been measured in several frequency regions between 128 and 329 GHz. The A–E splittings of the rotational transitions arising from the methyl top internal rotation were analysed employing the ERHAM and XIAM programs. Results. A dataset of approximately 900 newly assigned rotational transitions in the ground state of the Z isomer and a set of refined molecular constants, including the internal rotation parameters, are reported. Moreover, this work provides the first spectral characterisation of the less stable E isomer ground state, as well as the three lowest-lying vibrationally excited states of the Z isomer, v21 = 1, v14 = 1, and v20 = 1. This comprehensive spectroscopic study will allow a search for 2-iminopropanenitrile in the millimetre-wave surveys of interstellar sources, such as those recorded by the Atacama Large Millimeter/submillimeter Array.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.