Abstract
Recently, local field potentials (LFPs) have been successfully used to extract information of arm and hand movement in some brain-machine interfaces (BMIs) studies, which suggested that LFPs would improve the performance of BMI applications because of its long-term stability. However, the performance of LFPs in different frequency bands has not been investigated in decoding hand grasp types. Here, the LFPs from the monkey's dorsal premotor cortices were collected by microelectrode array when monkey was performing grip-specific grasp task. A K-nearest neighbor classifier performed on the power spectrum of LFPs was used to decode grasping movements. The decoding powers of LFPs in different frequency bands, channels and trials used for training were also studied. The results show that the broad high frequency band (200-400Hz) LFPs achieved the best performance with classification accuracy reaching over 0.9. It infers that high frequency band LFPs in PMd cortex could be a promising source of control signals in developing functional BMIs for hand grasping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.