Abstract

Decoding geometric Goppa codes can be reduced to solving the key congruence of a received word in an affine ring. If the codelength is smaller than the number of rational points on the curve, then this method can correct up to 1.2 (d*-L)/2-s errors, where d* is the designed minimum distance of the code and s is the Clifford defect. The affine ring with respect to a place P is the set of all rational functions which have no poles except at P, and it is somehow similar to a polynomial ring. For a special kind of geometric Goppa code, namely C/sub Omega /(D,mP), the decoding algorithm is reduced to solving the key equation in the affine ring, which can be carried out by the subresultant sequence in the affine ring with complexity O(n/sup 3/), where n is the length of codewords.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call