Abstract

We consider robust receiver design in uncoded multiple-input multiple-output (MIMO) wireless communication systems. In practical systems, the channel state information (CSI) available at the receiver is often imperfect due to measurement errors, quantization errors and many other sources of errors. Consequently, using the erroneous CSI for decoding the transmitted symbols will significantly degrade the symbol error rate (SER) performance of any decoding schemes. In this paper, we formulate and implement a decoder for MIMO systems with imperfect CSI. The prozposed decoder is the maximum likelihood (ML) decoder under imperfect receiver CSI, which is the optimal decoder. This "robust" decoder has exponential complexity; with the goal of reducing its complexity, we propose a recursive search algorithm which is akin to a modified form of sphere decoding. We verify, via numerical simulation, that the recursive search algorithm (termed as robust sphere decoder) achieves performance almost the same as the ML solution, with significantly lower computational complexity. For a 2 × 2 256 QAM system, the robust sphere decoder compares approximately 4500 solutions in contrast to 65536 comparisons using a brute-force search method. In addition, the proposed decoder has a significant performance improvement over conventional ML decoding that ignores channel estimation error. For a 2 × 2 16 QAM system, where the variance of the CSI error ranges ranges from 0.1 to 10 times the variance of the additive noise, and at SER of 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-3</sup> , the proposed decoder has a 4.5 dB gain over the conventional ML decoder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.