Abstract

BackgroundMultivoxel pattern analysis (MVPA) examines fMRI activation patterns associated with different cognitive conditions. Support vector machines (SVMs) are the predominant method in MVPA. While SVM is intuitive and easy to apply, it is mainly suitable for analyzing data that are linearly separable. Convolutional neural networks (CNNs) are known to have the ability to approximate nonlinear relationships. Applications of CNN to fMRI data are beginning to appear with increasing frequency, but our understanding of the similarities and differences between CNN models and SVM models is limited. New methodWe compared the two methods when they are applied to the same datasets. Two datasets were considered: (1) fMRI data collected from participants during a cued visual spatial attention task and (2) fMRI data collected from participants viewing natural images containing varying degrees of affective content. ResultsWe found that (1) both SVM and CNN are able to achieve above-chance decoding accuracies for attention control and emotion processing in both the primary visual cortex and the whole brain, (2) the CNN decoding accuracies are consistently higher than that of the SVM, (3) the SVM and CNN decoding accuracies are generally not correlated, and (4) the heatmaps derived from SVM and CNN are not significantly overlapping. Comparison with existing methodsBy comparing SVM and CNN we pointed out the similarities and differences between the two methods. ConclusionsSVM and CNN rely on different neural features for classification. Applying both to the same data may yield a more comprehensive understanding of neuroimaging data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.