Abstract

While machine learning has been making enormous strides in many technical areas, it is still massively underused in transmission electron microscopy. To address this, a convolutional neural network model was developed for reliable classification of crystal structures from small numbers of electron images and diffraction patterns with no preferred orientation. Diffraction data containing 571,340 individual crystals divided among seven families, 32 genera, and 230 space groups were used to train the network. Despite the highly imbalanced dataset, the network narrows down the space groups to the top two with over 70% confidence in the worst case and up to 95% in the common cases. As examples, we benchmarked against alloys to two-dimensional materials to cross-validate our deep-learning model against high-resolution transmission electron images and diffraction patterns. We present this result both as a research tool and deep-learning application for diffraction analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.