Abstract

The innate immune system is a collective network of cell types involved in cell recruitment and activation using a robust and refined communication system. Engagement of receptor-mediated intracellular signaling initiates communication cascades by conveying information about the host cell status to surrounding cells for surveillance and protection. Comprehensive profiling of innate immune cells is challenging due to low cell numbers, high dynamic range of the cellular proteome, low abundance of secreted proteins, and the release of degradative enzymes (e.g., proteases). However, recent advances in mass spectrometry-based proteomics provides the capability to overcome these limitations through profiling the dynamics of cellular processes, signaling cascades, post-translational modifications, and interaction networks. Moreover, integration of technologies and molecular datasets provide a holistic view of a complex and intricate network of communications underscoring host defense and tissue homeostasis mechanisms. In this Review, we explore the diverse applications of mass spectrometry-based proteomics in innate immunity to define communication patterns of the innate immune cells during health and disease. We also provide a technical overview of mass spectrometry-based proteomic workflows, with a focus on bottom-up approaches, and we present the emerging role of proteomics in immune-based drug discovery while providing a perspective on new applications in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call