Abstract

Tetracyclines have been important agents in combating infectious disease since their discovery in the mid-20th century. Following widespread use, tetracycline resistance mechanisms emerged and continue to create a need for new derivatives that are active against resistant bacterial strains. Semisynthesis has led to second and third generation tetracycline derivatives with enhanced antibiotic activity and pharmacological properties. Recent advancement in understanding of the tetracycline biosynthetic pathway may open the door to broaden the range of tetracycline derivatives and afford analogs that are difficult to access by synthetic chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.