Abstract

In this letter, we address the problem of decoding nonbinary low-density parity-check (LDPC) codes over finite fields GF(q), with reasonable complexity and good performance. In the first part of the letter, we recall the original belief propagation (BP) decoding algorithm and its Fourier domain implementation. We show that the use of tensor notations for the messages is very convenient for the algorithm description and understanding. In the second part of the letter, we introduce a simplified decoder which is inspired by the min-sum decoder for binary LDPC codes. We called this decoder extended min-sum (EMS). We show that it is possible to greatly reduce the computational complexity of the check-node processing by computing approximate reliability measures with a limited number of values in a message. By choosing appropriate correction factors or offsets, we show that the EMS decoder performance is quite good, and in some cases better than the regular BP decoder. The optimal values of the factor and offset correction are obtained asymptotically with simulated density evolution. Our simulations on ultra-sparse codes over very-high-order fields show that nonbinary LDPC codes are promising for applications which require low frame-error rates for small or moderate codeword lengths. The EMS decoder is a good candidate for practical hardware implementations of such codes

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.