Abstract

Driven by technologies such as IoT-enabled health care, machine learning applications at the edge, and industrial automation, mobile edge and fog computing paradigms have reinforced a general trend toward decentralized computing, where any network node can route traffic, compute tasks, and store data, possibly at the same time. In many such computing environments, there is a need to cache significant amounts of data, which may include large data sets, machine learning models, or executable code. In this work, we propose a framework for joint computation scheduling, caching, and request forwarding within such decentralized computing environments. We first characterize the stability region of a “genie-aided” computing network where data required by computation are instantly accessible, and develop a throughput optimal control policy for this model. Based on this, we develop a practically implementable distributed and adaptive algorithm, and show that it exhibits superior performance in terms of average task completion time, when compared to several baseline policies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.