Abstract

In this study, we quantify the density, cover and obstruction width of vegetation patches, the roughness of landscape surfaces, and the diversities of plants and grasshoppers with distance from cattle watering- points. We used distance from water as a surrogate for a gradient in grazing pressure. Fourteen study sites were located in the Victoria River District of northern Australia, seven from a water point on Kidman Springs Station on calcareous red loam soils and seven from a water point at Mount Sanford Station on craclcing-clay black soils. At each study site transect lines were oriented within the landscape to run downslope (i.e. in the direction of flows of run-off). We measured the intercept length and obstruction width of perennial vegetation patches along these lines. Plant diversity was measured in quadrats positioned along each line and grasshopper diversity was determined by species counts on each site. We also surveyed the roughness of the landscape surface along each line. A rough surface will tend to slow run-off. hence increase time for water infiltration and soil-water storage. Surface roughness declined near water, as did the density, cover and obstruction width of perennial vegetation patches. Grasshopper and plant species richness also declined near water. These declines suggest strong linkages between landscape filmtion. biodiversity and inipacts of cattle grazing and trampling. Cattle will always create 'sacrifice zones' around watering-points. However, the area of this impact on function and diversity can be minimised by managing the timing and intensity of paddock use. Key words: grazing gradients. Kidman Springs, landscape function. Mount Sanford, piosphere, surface roughness, tropical grasslands, tropical savannas

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.