Abstract

As part of an ongoing longitudinal study in North and South Carolina, this study reports the recovery of Helicoverpa zea (Boddie) pupae in field trials with genetically engineered corn, Zea mays L., hybrids that produce insecticidal toxins from Bacillus thuringiensis (Bt) in 2017-2019. In total, 10,400 corn ears were collected, which led to 3,927 H. zea pupae (2,215 in South Carolina and 1,712 in North Carolina). Late-planted corn led to a 3.39-fold increase in recovery of pupae compared to early-planted corn. Bt corn expressing Cry1F + Cry1Ab and Cry1A.105 + Cry2Ab2 had 1.67-fold and 2.51-fold fewer pupae than non-Bt near-isolines, respectively. Only six pupae were recovered from the hybrid expressing Cry1F + Cry1Ab + Vip3Aa20. Averaged across trials, Bt corn expressing either Cry1A.105 + Cry2Ab2 or Cry1F + Cry1Ab significantly reduced pupal weight compared to non-Bt near-isolines in North and South Carolina. Combining our data with a previous study at the same locations (Bilbo et al. 2018), reduction in pupal weight between Bt and non-Bt near-isolines significantly declined from 2014 to 2019 for Cry1Ab + Cry1F in North and South Carolina. This decline in levels of a sublethal effect of Bt corn expressing Cry1Ab + Cry1F on H. zea at both locations is likely correlated with resistance development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call