Abstract
Increasingly complex hardware makes the design of effective compilers difficult. To reduce this problem, we introduce Declarative Loop Tactics , which is a novel framework of composable program transformations based on an internal tree-like program representation of a polyhedral compiler. The framework is based on a declarative C++ API built around easy-to-program matchers and builders, which provide the foundation to develop loop optimization strategies. Using our matchers and builders, we express computational patterns and core building blocks, such as loop tiling, fusion, and data-layout transformations, and compose them into algorithm-specific optimizations. Declarative Loop Tactics (Loop Tactics for short) can be applied to many domains. For two of them, stencils and linear algebra, we show how developers can express sophisticated domain-specific optimizations as a set of composable transformations or calls to optimized libraries. By allowing developers to add highly customized optimizations for a given computational pattern, we expect our approach to reduce the need for DSLs and to extend the range of optimizations that can be performed by a current general-purpose compiler.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Architecture and Code Optimization
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.