Abstract

The aim of solver-independent modelling is to create a model of a satisfaction or optimisation problem independent of a particular technology. This avoids early commitment to a solving technology and allows easy comparison of technologies. MiniZinc is a solver-independent modelling language, supported by CP, MIP, SAT, SMT, and constraint-based local search (CBLS) backends. Some technologies, in particular CP and CBLS, require not only a model but also a search strategy. While backends for these technologies offer default search strategies, it is often beneficial to include in a model a user-specified search strategy for a particular technology, especially if the strategy can encapsulate knowledge about the problem structure. This is complex since a local-search strategy (comprising a neighbourhood, a heuristic, and a meta-heuristic) is often tightly tied to the model. Hence we wish to use the same language for specifying the model and the local search. We show how to extend MiniZinc so that one can attach a fully declarative neighbourhood specification to a model, while maintaining the solver-independence of the language. We explain how to integrate a model-specific declarative neighbourhood with an existing CBLS backend for MiniZinc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.