Abstract

Mapping languages allow us to define how Linked Data is generated from raw data, but only if the raw data values can be used as is to form the desired Linked Data. Since complex data transformations remain out of scope for mapping languages, these steps are often implemented as custom solutions, or with systems separate from the mapping process. The former data transformations remain case-specific, often coupled with the mapping, whereas the latter are not reusable across systems. In this paper, we propose an approach where data transformations (i) are defined declaratively and (ii) are aligned with the mapping languages. We employ an alignment of data transformations described using the Function Ontology ( Open image in new window ) and mapping of data to Linked Data described using the rdf Mapping Language (rml). We validate that our approach can map and transform dbpedia in a declaratively defined and aligned way. Our approach is not case-specific: data transformations are independent of their implementation and thus interoperable, while the functions are decoupled and reusable. This allows developers to improve the generation framework, whilst contributors can focus on the actual Linked Data, as there are no more dependencies, neither between the transformations and the generation framework nor their implementations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.