Abstract

Semiconducting polymers used for making light-emitting diodes, solar cells, and transistors have come a long way since the materials were first commercially developed in the 1980s. One of the important advances has been taking the original monomers such as thiophene and designing derivatives that allow researchers to better control polymer electronic properties, thus leading to improved device performance. In the latest example, Itaru Osaka of RIKEN’s Center for Emergent Matter Science and coworkers have created an imide-functionalized tetrathiophene as a new electron-deficient semiconducting polymer building block (Adv. Mater. 2016, DOI: 10.1002/adma.201601373). The researchers drew inspiration from bithiopheneimide, a molecule already known for its electron-withdrawing imide group’s knack for enhancing polymer electron-acceptor abilities. To enhance those abilities further, the team used a multistep reaction to synthesize a fused dimer of the compound functionalized with branched N-alkyl groups. The researchers then used the dimer, called dithienylthienothiophenebisimide, or TBI, together with thiophene- or

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.