Abstract

Actinide metal oxo clusters are of vital importance in actinide chemistry, as well as in environmental and materials sciences. They are ubiquitous in both aqueous and nonaqueous phases and play key roles in nuclear materials (e.g., nuclear fuel) and nuclear waste management. Despite their importance, our structural understanding of the actinide metal oxo clusters, particularly the transuranic ones, is very limited because of experimental challenges such as high radioactivity. Herein we report a systematic theoretical study on the structures and stabilities of seven actinide metal oxo-hydroxo clusters [AnIV6O4(OH)4L12] (1-An; An = Th-Cm; L = O2CH-) along with their group 4 (Ti, Zr, Hf, Rf) and lanthanide (Ce) counterparts [MIV6O4(OH)4L12] (1-M). The work shows the Td-symmetric structures of all of the 1-An/M clusters and suggests the positions of the -OH functional groups, which are experimentally challenging to determine. Furthermore, by removing six electrons from 1-An, we found that oxidation could happen on the AnIV metal ions, producing [AnV6O4(OH)4L12]6+ (2-An; An = Pa, U, Np), or on the O2- and OH- ligands, producing [AnIV6(O•-)4(OH•)2(OH)2L12]6+ (3-An; An = Pu, Am, Cm). On the basis of 2-An, we constructed a series of tetravalent and pentavalent actinide metal oxo clusters [AnIV6O14]4- (4-An) and [AnV6O14]2+ (5-An), which proves the feasibility of the highly important pentavalent actinyl clusters, demonstrates the f orbital's structure-directing role in the formation of linear [O≡AnV═O]+ actinyl ions, and expands the concept of actinyl-actinyl interaction into pentavalent transuranic actinyl clusters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.