Abstract

The present paper studies the influence of suspension conductivity on the electrophoretic deposition (EPD) of nanoparticles inside a porous anodic aluminium oxide film. It is shown that an increase in the suspension’s conductivity enhances impregnation of the anodic film by the nanoparticles. Two mechanisms are seen to promote the migration of particles into the pores. Indeed an increase in the suspension conductivity leads on the one hand to a strengthening of the electric field in the anodic film and on the other hand to a thinning of the electric double layer on the pore walls. The results of our study confirm that colloidal suspension conductivity is a key parameter governing the electrophoretic impregnation depth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.