Abstract

The eigenvalues and eigenvectors of the Fisher Information Matrix (FIM) can reveal the most and least sensitive directions of a system and it has wide application across science and engineering. We present a symplectic variant of the eigenvalue decomposition for the FIM and extract the sensitivity information with respect to two-parameter conjugate pairs. The symplectic approach decomposes the FIM onto an even-dimensional symplectic basis. This symplectic structure can reveal additional sensitivity information between two-parameter pairs, otherwise concealed in the orthogonal basis from the standard eigenvalue decomposition. The proposed sensitivity approach can be applied to naturally paired two-parameter distribution parameters, or a decision-oriented pairing via regrouping or re-parameterization of the FIM. It can be used in tandem with the standard eigenvalue decomposition and offer additional insights into the sensitivity analysis at negligible extra cost. Supplementary materials for this article are available online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.