Abstract

In this paper, decision-feedback differential detection (DF-DD) of M-ary differential phase-shift keying (MDPSK) signals, which has been introduced previously for the additive white Gaussian noise (AWGN) channel by Leib et al. (1988) and Edbauer (1992), is extended to flat Rayleigh fading channels. The corresponding DF-DD metric is derived from the multiple-symbol detection (MSD) metric and for genie-aided DF-DD, an exact expression for the bit-error rate (BER) of QDPSK (M=4) is calculated. Furthermore, the dependence of BER on the power spectrum of the fading process is investigated for feedback filters of infinite order. It is shown that in this case, for ideally bandlimited fading processes, the error floor of conventional differential detection (DD) can be removed entirely. Simulation results confirm that both MSD and DF-DD with feedback filters of finite order can reduce the error floor of conventional DD significantly. DF-DD thereby causes considerably less computational load.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.