Abstract

Decision trees are popular representations of Boolean functions. We show that, given an alternative representation of a Boolean function f, say as a read-once branching program, one can find a decision tree T which approximates f to any desired amount of accuracy. Moreover, the size of the decision tree is at most that of the smallest decision tree which can represent f and this construction can be obtained in quasi-polynomial time. We also extend this result to the case where one has access only to a source of random evaluations of the Boolean function f instead of a complete representation. In this case, we show that a similar approximation can be obtained with any specified amount of confidence (as opposed to the absolute certainty of the former case.) This latter result implies proper PAC-learnability of decision trees under the uniform distribution without using membership queries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.