Abstract
Nontechnical losses, particularly due to electrical theft, have been a major concern in power system industries for a long time. Large-scale consumption of electricity in a fraudulent manner may imbalance the demand-supply gap to a great extent. Thus, there arises the need to develop a scheme that can detect these thefts precisely in the complex power networks. So, keeping focus on these points, this paper proposes a comprehensive top-down scheme based on decision tree (DT) and support vector machine (SVM). Unlike existing schemes, the proposed scheme is capable enough to precisely detect and locate real-time electricity theft at every level in power transmission and distribution (T&D). The proposed scheme is based on the combination of DT and SVM classifiers for rigorous analysis of gathered electricity consumption data. In other words, the proposed scheme can be viewed as a two-level data processing and analysis approach, since the data processed by DT are fed as an input to the SVM classifier. Furthermore, the obtained results indicate that the proposed scheme reduces false positives to a great extent and is practical enough to be implemented in real-time scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.