Abstract
The work is devoted to studying SARS-CoV-2-associated pneumonia and the investigating of the main indicators that lead to the patients’ mortality. Using the good-known parameters that are routinely embraced in clinical practice, we obtained new functional dependencies based on an accessible and understandable decision tree and ML ensemble of classifiers models that would allow the physician to determine the prognosis in a few minutes and, accordingly, to understand the need for treatment adjustment, transfer of the patient to the emergency department. The accuracy of the resulting ensemble of models fitted on actual hospital patient data was in the range of 0.88–0.91 for different metrics. Creating a data collection system with further training of classifiers will dynamically increase the forecast’s accuracy and automate the doctor’s decision-making process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.