Abstract
This paper describes the information system that has been built for the support of sanitary teams. The system is aimed at supporting analytical work which must be carried out when there is a risk of an epidemic outbreak. It is meant to provide tools for predicting the size of an epidemic on the basis of the actual data collected during its course. Since sanitary teams try to control the size of the epidemics such a tool must model also sanitary teams activities. As a result a model for the prediction can be quite complicated in terms of the number of equations it contains. Furthermore, since a model is based on several parameters there must be a tool for finding these parameters on the basis on the actual data corresponding to the epidemic evolution. The paper describes the proposition of such a system. It presents, in some details, the main components of the system. In particular, the environment for building complex models (containing not only the epidemic model but also activities of sanitary teams trying to inhibit the epidemic) is discussed. Then, the module for a model calibration is presented. The module is a part of server for solving optimal control problems and can be accessed via Internet. Finally, this paper shows how optimal control problems can be constructed with the aim of the efficient epidemic management. Some optimal control problems related to that issue are discussed and numerical results of its solution are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Decision Support System Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.